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Variational methods for the solution of the Ornstein-Zernicke equation in inhomogeneous system
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We show that the Ornstein-Zernicke equation and other equations of similar form obey a variational prin-
ciple that can be used to derive approximate solutions. This method requires the use of an initial trial solution
where the variational solution possesses a stationary ‘‘point’’ with respect to the trial solution when the latter
is equal to the exact solution. We show that with even a very simple form of the trial solution the results are
quite reasonable. Furthermore, we have demonstrated that by combining the variational method with an
iterative expansion of the Ornstein-Zernicke equation it is possible to develop a self-consistent method of
writing the direct correlation function.
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I. INTRODUCTION

During the past three decades the study of condensed
ter has emerged as one of the areas of most intense ac
@1#; it is, indeed, impossible to present even a superfi
summary of the developments. In this introductory sect
we mention only a very small ‘‘slice’’ of the relevant litera
ture. From an experimental perspective, the structure fac
for a vast number of systems have been made acces
through the advances in x-ray and neutron scattering te
nologies. The Fourier transforms of the structure factor
related to the pair correlation functionh(1,2), where the two
numerals 1 and 2 are the abbreviations for the complete
of coordinates required for the specification of two arbitra
molecules. This function is readily derived from basic sta
tical mechanics and therefore constitutes the gateway for
interpretation of the experimental data.

Three methods of study have emerged as possible
proaches that may be adopted for the investigation of th
systems.

~1! The classical partition function may be expressed
sums of irreducible cluster integrals and the pair correlat
function computed from this expansion@2–5#. If the system
can be expressed in terms of the grand canonical part
function then several powerful theorems can be used and
calculation is rendered very elegant. If, however, the syste
consist of a finite number of~molecular! species then the
validity of these theorems is rather doubtful.

~2! If the canonical partition function can be written fo
the system then by application of the methods of functio
differentiation it can easily be shown that the pair correlat
function must satisfy an integral equation known as
Ornstein-Zernicke equation@6,7#. The Ornstein-Zernicke
equation has been the subject of extensive studies. Sta
with the work of Wertheim@8#, who solved the equation fo
a hard-sphere fluid, Blum and co-workers have develo
methods that are applicable to fluids with fairly compl
structures@9–12#.

~3! A complete computer based analysis employing
full power of simulation techniques may be employed.

In this paper we will investigate the second approach
develop the tools that are needed to solve the Ornst
1063-651X/2003/67~1!/016108~11!/$20.00 67 0161
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Zernicke equation. As indicated above, this important eq
tion has been extensively studied but a considerable bod
the literature is directed toward homogeneous systems
translational invariance. Our interest in the subject ar
from the need to understand the thermodynamic propertie
nanopores that are found in polymeric membranes use
the construction of fuel cells@13–16#. It is evident that for
such systems the criterion of translational invariance fails
hold. There are, of course a large variety of other phenom
where translational invariance is not valid: surface wett
and electrode processes are but two such examples.

II. BRIEF REVIEW OF THE ORNSTEIN-ZERNICKE
EQUATION

It is not the purpose of this section to once again pres
the derivation of a well-known equation for which excelle
accounts can be found in the literature, but rather to int
duce the notation and the framework within which the so
tion is sought. The basic quantities to be utilized in this pa
may be introduced as follows.

~i! We consider systems withN molecules for which the
HamiltonianHT can be written as

HT~p1 ,p2 , . . . ,pN,1,2, . . . ,N!5(
i 51

N pi
2

2m
1H~1,2, . . . ,N!,

H~1,2, . . . ,N![(
i 51

N

f~ i !1(
i , j

N

c~ i , j !.

Here, the first term inHT is the total kinetic energy, where i
is assumed that moleculei possesses momentumpi and mass
m. The quantityH is the total interaction energy, which w
assume to consist of one-bodyf( i ) and two-bodyc( i , j )
potential energy terms only.

~ii ! With the above Hamiltonian the full canonical part
tion function immediately becomes

QN5
1

N!L3N qN[
QN

id

V
qN ,

where
©2003 The American Physical Society08-1
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L5S 2pb\2

m D 1/2

,

qN5E )
i 51

N

di z* ~ i !expS 2b(
i , j

N

c~ i , j !D ,

z* ~ i !5e2bf~ i !, b51/kT. ~1!

In the above equationsV is the volume of the system,\ is
Planck’s constant,k is the Boltzmann constant, andT is the
absolute temperature. As is well known from elementary s
tistical mechanics,QN

id is the partition function of an idea
gas and does not depend upon the potential energy of
system. The factorqN contains all the information that arise
as a result of the nonideality of the system and contains
basic ingredients that are needed for the computation of
pair correlation function; it is this quantity that will be o
primary concern in the present work and it will be hencefo
referred to as theconfiguration integral.

~iii ! The full N-body distribution function is given by

nN~1,2, . . . ,N!5
1

qN
exp@2bH~1,2, . . . ,N!#.

An arbitrarym-body distribution function withm,N can be
obtained fromnN by integration over theN2m variables:

nm~1,2, . . . ,m!5
N!

~N2m!! E )
i 5m11

N

di nN~1,2, . . . ,N!.

~iv! The dimensionlessm-bodygm distribution function is
defined by

gm~1,2, . . . ,m!5
nm~1,2, . . . ,m!

) i 51
m n1~ i !

.

The two-body functiong2 is often written without the sub
script 2 as simplyg.

~v! The experimentally important pair correlation functio
alluded to above is defined by

h~1,2!5g~1,2!21.

~vi! Them-body distribution functions are obtained by th
functional differentiation of the configuration integral:

nm~1,2,...,m!5
1

qN
)
i 51

m

z* ~ i !
dm

) i 51
m dz* ~ i !

qN . ~2!

~vii ! From Eq.~2! it follows that

z* ~2!
dn1~1!

dz* ~2!
[

dn1~1!

d ln z* ~2!

5n1~1!d~1,2!1n1~1!n1~2!h~1,2!; ~3!

here,d~1, 2! is the Dirac delta function.
~viii ! The direct correlation functionc(1,2) is defined by
01610
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c~1,2![
d ln@n1~1!/z* ~1!#

dn1~2!
5

1

n1~1!
d~1,2!2

d ln z* ~1!

dn1~2!
.

~4!

~ix! Equation~4! provides the inverse of Eq.~3! and the
two may be combined to yield the Ornstein-Zernicke eq
tion

h~1,2!5c~1,2!1E d1̄ c~1,1̄!n1~ 1̄!h~ 1̄,2!. ~5!

Since the Ornstein-Zernicke equation is an integral eq
tion it can be solved by using an iterative technique and
first few terms are as follows:

h~1,2!5c~1,2!1E d1̄ c~1,1̄!n1~ 1̄!c~ 1̄,2!

1E d1̄ d2̄ c~1,1̄!n1~ 1̄!c~ 1̄,2̄!n1~ 2̄!c~ 2̄,2!1¯

[h~0!~1,2!1h~1!~1,2!1¯ . ~6!

Unfortunately, while such an expansion does converge,
rate of convergence tends to be slow and the complexity
each successive term increases in a dramatic fashion. Th
fore iterative series do not provide a practical method
solution. It is easy to see that Eq.~5! may also be rewritten in
the following form, since the same iterative expansion se
is produced from it:

h~1,2!5c~1,2!1E d1̄ h~1,1̄!n1~ 1̄!c~ 1̄,2!. ~7!

Thus, both methods of writing the Ornstein-Zernicke equ
tion are completely equivalent and both will be used in t
work.

It is the Ornstein-Zernicke equation that is an importa
source for the pair correlation function; however, the follo
ing facts must be considered in using this equation.

~i! Before the pair correlation function can be comput
from the Ornstein-Zernicke equation the direct correlat
function c must be available since it is still an unknow
quantity. There are several prescriptions, commonly refer
to as closure relations, that have been developed for th
computation ofc. While it is not the purpose of this paper t
present a discussion of the closure relations, the princip
presented here do have an impact on some of these relat

~ii ! The Ornstein-Zernicke equation is an integral equat
that must be solved before the pair correlation function c
be extracted from it. If we consider a system that posses
the property of translational invariance then such a solut
is possible; however, for inhomogeneous systems such
those found in nanopores and in a variety of other import
situations the criterion of translational invariance does
hold and either a numerical or an approximate solution m
be sought. In most cases, even when the condition of tra
lational invariance holds, the application of numerical me
ods for solving integral equations has to be used. These
merical methods require an initial guess functionc(I) or h(I) ,
8-2
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which is then substituted in the Ornstein-Zernicke equat
and an improved versionc(II) or h(II) computed, the proces
being repeated until convergence is achieved. Hansen
McDonald@1# point to the slow rate of convergence even i
reasonable guess has initially been made; a situation
deteriorates with increasing complexity of the fluid. It fo
lows therefore that there is a need to develop optimiza
methods that can be used either to produce approximate
lutions of an analytic nature or to assist in the converge
process. This paper is devoted to the development of
such method.

The Ornstein-Zernicke equation possesses an overall f
that resembles the form of another integral equation, wh
arises in quantum field theory, namely, the Dyson equat
Rosenberg and Tolchin@17# showed that it is possible to
derive a variational theorem for the Dyson equation and
this paper we present a variational theorem for the Ornst
Zernicke equation. Furthermore, we show that the variatio
method can be used to select a self-consistent form for
direct correlation function.

III. VARIATIONAL THEOREM OBEYED BY THE
ORNSTEIN-ZERNICKE EQUATION

In order to develop a formalism that is expressible with
the language of functional algebra it is expedient to be
with a very obvious statement: the search for a solution
the Ornstein-Zernicke equation is completely equivalent
solving the functional equation

I@h~1,2!#50, ~8!

where

I@h~1,2!#[h~1,2!2c~1,2!2E d1̄ h~1,1̄!n1~ 1̄!c~ 1̄,2!.

~9!

The Taylor expansion ofI@h# about a trial solutionht and
the retention of the linear term only results in the product
of the simplest approximate solution of this functional equ
tion:

I@h~1,2!#'I@ht~1,2!#1E d1̄ d2̄ V~1,2;1̄,2̄!@h~ 1̄,2̄!

2ht~ 1̄,2̄!#1O@~h2ht!
2#

50, ~10!

where we have introduced a functionV dependent upon fou
variables:

V~ i , j ;k,n![FdI@h~ i , j !#

dh~k,n! G
h5ht

. ~11!

The solution referred to above may be extracted from
~10! by introducing the inverse functionV21 defined in the
following manner:
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E d ī d j̄ V21~ i ,k; ī , j̄ !V~ ī , j̄ ; l , j !

5E d ī d j̄ V~ i ,k; ī , j̄ !V21~ ī , j̄ ; l , j !5d~ i ,l !d~ j ,k!.

~12!

InsertingV21 in Eq. ~10!, we obtain an approximate solutio
hv :

hv~1,2!5ht~1,2!2E d1̄ d2̄ V21~1,2;1̄,2̄!I@ht~ 1̄,2̄!#.

~13!

Equation ~10! results from an approximation in which a
second and higher order errors have been neglected; it
lows, therefore, thathv must contain errors of second an
higher orders only. From the perspective of the present w
the most important feature of Eq.~13! can be understood if it
is realized thatht differs from the exact pair correlation func
tion through a first order error (h2ht), and similarly Eq.
~10! shows thatI@ht# incorporates a first order error whilehv
contains second order errors. It therefore follows that
~13! may be viewed as a transformation that removes fi
order errors, which is a feature that will be exploited wi
advantage. It should be evident that this stage in the ca
lation is analogous to the well-known Newtonian method
calculating the roots of nonlinear algebraic equations and
continued in the spirit of that method, the next stage wo
involve employinghv as the trial function in a second itera
tion. The process of iterations would finally lead to a se
consistent solution. It is not our purpose, however, to
velop such a scheme.

The functionhv obeys a variational theorem that can
readily proved by taking the functional derivative of Eq.~13!
with respect to the trial functionht and then settinght5h in
the resulting equation:

Fdhv~1,2!

dht~3,4! G
ht5h

5Fdht~1,2!

dht~3,4!G
ht5h

2E d1̄ d2̄ V21~1,2;1̄,2̄!

3FdI@ht~ 1̄,2̄!#

dht~3,4!
G

ht5h

5d~1,3!d~2,4!

2E d1̄ d2̄ V21~1,2;1̄,2̄!V~ 1̄,2̄;3,4!

50. ~14!

In deriving Eq.~14!, use has been made of Eqs.~11! and~12!
and it proves the variational property of the functionhv . In
other words, when we consider the setX of all possible trial
functions, the functionhv possesses a ‘‘stationary point
when the trial function becomes equal to the exact corre
tion functionh. This feature justifies the use of the subscr
v in hv . From a practical standpoint it is possible to obta
the ‘‘best’’ solution to the Ornstein-Zernicke by using a tri
8-3
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function ht with a certain number of parameters and th
determining these parameters by setting the derivative ohv
with respect to these parameters equal to zero. The m
ematical machinery required to further develop the va
tional method will be presented later in this paper.

From a fundamental perspective@18# it is imperative that
the precise properties of the spaceX be carefully discussed
We present this analysis in the following manner.

~1! Any elementuPX must, clearly, be the function o
two space variablesr and r 8 for which numerical symbols
such as 1 and 2 have been hitherto used. For the purpos
studying the structural and metrical properties ofX it is con-
venient to adopt the non-numerical symbolism. It is imp
tant to bear in mind the fact that each of these variables i
abbreviation for the complete set of coordinates required
the specification of any arbitrary molecule.

~2! Given any pair of elementsuPX andvPX we require
that the linear combinationw5au1bvPX with a and b
being arbitrary members of the real field. This condition
indeed, essential for the practical implementation of o
method since we will make use of linear combinations
functions with the coefficients of combination as variation
parameters. This property ensures thatX is a linear manifold
in the space of all functions.

~3! As a consequence of~1! and ~2! it follows that given
uPX, vPX, andwPX the following must hold:

v1t~w2v !PX, 0<t<1.

Thus,X constitutes aconvexset.
~4! As in any functional space it is possible to introduce

variety of different norms, but in the present case the follo
ing is the most convenient definition:

iui5max
r ,r 8

uu~r ,r 8!u.

~5! The norm introduces anatural metric:

d~u,v !5iu2vi .

~6! Within this metric we assume thatX contains the lim-
its of all sequences chosen from it and thus constitute
normed linear space in its natural metric and qualifies a
Banachspace.

~7! At this stage a very important difference between
variational theorems used in the solution of differential eq
tions~for example, the Schro¨dinger equation of quantum me
chanics! and the present one must be clearly emphasized
the former~differential equations! the variational functional
~the energy in the case of the Schro¨dinger equation! is gen-
erated from the functions in the setX and is not a member o
this set. In the present case we see from Eqs.~8!–~13! thathv
is itself an approximate solution of the Ornstein-Zernic
equation; thushvPX and therefore, as a functional, shar
the property of convexity withX.

It will be convenient for later purposes to rewrite Eq.~13!.
To start, we write the inverse functionV21 as follows:

V21~ i , j ;k,l !5d~ i ,k!d~ j ,l !2x~ i , j ;k,l !. ~15!
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Here, x( i , j ;k,l ) is a new and still unknown function. Sec
ondly, the functionalI@ht# can be written from Eq.~9! as

I@ht~1,2!#5ht~1,2!2hu~1,2!,

the functionhu being defined as follows:

hu~1,2![c~1,2!1E d1̄ ht~1,1̄!n1~ 1̄!c~ 1̄,2!.

The meaning ofhu is obvious since it corresponds to th
result of the first order iteration that ensues from the sub
tution of ht in the right hand side of Eq.~7!. Equation~13!
now becomes

hv~1,2!5hu~1,2!1E d1̄ d2̄ x~1,2;1̄,2̄!

3@ht~ 1̄,2̄!2hu~ 1̄,2̄!#. ~16!

Once again it is important to reemphasize theerror trans-
forming propertiesof Eq. ~16! from the fact that bothhu and
ht contain first order errors whilehv contains second orde
errors. In general it is possible to first computehu from a
given ht and then calculate the unknown functionx( i , j ;k,l )
by requiring Eq.~14! to hold. We return to this matter later i
the paper.

Although Eq.~16! has been derived in the context of th
Ornstein-Zernicke equation it is in fact a general prope
that can be derived for any integral equation with the sa
overall form as the Ornstein-Zernicke equation. The gene
derivation is worth summarizing in the following basic step

~i! Consider an arbitrary linear integral equation

c~A,B!5w~A,B!1E dĀ dB̄ K~A,B;Ā,B̄!c~Ā,B̄!;

~17!

hereA and B are any general and arbitrary set of variab
with c the unknown function the form of which is sought;w
andK are known functions.

~ii ! A trial solutionc t is inserted in the right hand side o
Eq. ~17! and an improved solutioncu calculated:

cu~A,B!5w~A,B!1E dĀ dB̄ K~A,B;Ā,B̄!c t~Ā,B̄!.

It is evident thatcu must be characterized by first orde
errors (c2c t).

~iii ! A variational solution, characterized by errors of se
ond and higher orders, of a form similar to Eq.~16! is easily
derived by proceeding through the same sequence of ste

cv~A,B!5cu~A,B!1E dĀ dB̄ k~A,B;Ā,B̄!

3@cu~Ā,B̄!2c t~Ā,B̄!#. ~18!

k plays the role of the functionx in Eq. ~16!.
~iv! Becausecv is a variational solution it must satisfy th

standard variational equation
8-4
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Fdcv~A,B!

dc t~C,D !G
c t5c

50. ~19!

~v! Equation~19! immediately leads to an integral equ
tion for the functionk:

k~A,B;C,D !5p~A,B;C,D !

1E dĀ dB̄ k~A,B;Ā,B̄!p~Ā,B̄;C,D !,

~20!

where

p~A,B;C,D ![F dcu~A,B!

dc1~C,D !G
c t5c

.

~vi! Equation ~20! has the same overall form as th
Ornstein-Zernicke equation but this time involves four va
ables in each function. It is evident that a hierarchy of in
gral equations involving, in each stage, an increment of
variables can be derived from the underlying variatio
properties.

In the case of the Ornstein-Zernicke equation a parti
larly important simplifying feature is present by virtue of th
fact that the functionK is linearly related tow. This property
allows the functionV21 to be computed. Taking a functiona
derivative of Eq.~9! in the following manner the explici
form of V is easily calculated:

FdI@h~1,2!#

dh~3,4! G
h5ht

5V~1,2;3,4!5
dh~1,2!

dh~3,4!

2E d1̄
dh~1,1̄!

dh~3,4!
n1~ 1̄!c~ 1̄,2!

5d~1,3!d~2,4!2d~1,3!n1~4!c~2,4!.

~21!

Combining Eqs.~21! and ~15! we have

E d1̄ d2̄ V21~1,2;1̄,2̄!V~ 1̄,2̄;3,4!

5E d1̄ d2̄@d~1,1̄!d~2,2̄!2x~1,2;1̄,2̄!#@d~ 1̄,3!d~ 2̄,4!

2d~ 1̄,3!n1~4!c~ 2̄,4!#5d~1,3!d~2,4!

2d~1,3!n1~4!c~2,4!2x~1,2;3,4!

1E d2̄ x~1,2;3,2̄!n1~4!c~ 2̄,4!.

The last three terms in this result will vanish@which must be
the case if Eqs.~15! and ~21! are to be the inverse of eac
other# if we select

x~1,2;3,4!52d~1,3!n1~4!h~2,4!,
01610
-
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x~1,2;3,2̄!52d~1,3!n1~ 2̄!h~2,2̄!,

and employ the Ornstein-Zernicke equation with suita
variable changes. Thus we see that the desiredV21 is, in
general, given by

V21~ i , j ;k,l !5d~ i ,k!d~ j ,l !1d~ i ,k!n1~ l !h~ l , j !.

Unfortunately, the inverse still contains the unknown p
correlation functionh and we replace it by a second tria
function ht :

V21~ i , j ;k,l !5d~ i ,k!d~ j ,l !1d~ i ,k!n1~ l !ht~ l , j !.
~22!

Substituting Eq.~22! in Eq. ~13! we obtain an approximation
for the pair correlation functionhv :

hv~1,2!5c~1,2!1E d1̄ ht~1,1̄!n1~ 1̄!c~ 1̄,2!

2E d1̄ ht~1,1̄!n1~ 1̄!ht~ 1̄,2!

1E d1̄ c~1,1̄!n1~ 1̄!ht~ 1̄,2!

1E d1̄ d2̄ ht~1,2̄!n1~ 2̄!c~ 2̄,1̄!n1~ 1̄!ht~ 1̄,2!.

~23!

The insertion of a second trial functionht results in the
introduction of the first order error (h2ht) in hv . Despite
this fact hv still retains its variational property, which w
now demonstrate. Taking the functional derivative of E
~23! with respect to the trial functionsht ~3,4! andht ~3,4!
and replacing any residual functionsht and/orht by the ex-
act solutionh, we get

Fdhv~1,2!

dht~3,4! G
hr5h

ht5h
52d~1,3!n1~4!Fh~4,2!2c~4,2!

2E d1̄ c~4,1̄!n1~ 1̄!h~ 1̄,2!G
50, ~24!

Fdhv~1,2!

dht~3,4! G
hr5h

ht5h
52d~2,4!n1~3!Fh~1,3!2c~1,3!

2E d1̄ c~1,1̄!n1~ 1̄!h~ 1̄,3!G
50. ~25!

The right hand sides of both these equations vanish bec
the exact correlation functionh must, by hypothesis, obe
the Ornstein-Zernicke equation.

From a practical standpoint we may now select the t
functionsht andht to contain arbitrary sets of parameters
8-5
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ht~ i , j !5ht~ i , j ;a1 ,a2 ,...,aM !,

ht~ i , j !5ht~ i , j ;b1 ,b2 ,...,bM !.

When these are substituted in Eq.~23! we obtain

hv5hv~ i , j ;a1 ,a2 ,...,aM ,b1 ,b2 ,...,bM !. ~26!

The parameters can be computed by invoking the variatio
property ofhv :

S ]hv

]aj
D50 j 51,2, . . . ,M ,

S ]hv

]bj
D50 j 51,2, . . . ,M . ~27!

Once the set of 2M simultaneousalgebraic equations~27!
have been solved for the parametersaj andbj and the results
substituted inhv , the ‘‘best’’ variational approximation to
the solution of the Ornstein-Zernicke is obtained.

The methodology developed above does not provide
with a suitable prescription for the choice of the trial fun
tions ht and ht ; and these are left to the judgment of th
investigator. In general it is best to use functions that inc
porate as much physical and chemical information about
system as possible. It is hoped that the method will fi
extensive applications to systems where the simplificati
from translational invariance are not available. In such
stances the trial functions could be taken by parametriz
the pair correlation function of a closely allied system w
translational invariance and then using the variatio
method for calculating the parameters. Another guiding p
ciple in making choices of the trial functions would be t
simplicity of these functions so that the necessary ma
ematical operations such as integrations and the solutio
algebraic equations can be easily carried out.

IV. NUMERICAL ASSESSMENT OF THE POTENTIAL
APPLICABILITY OF THE VARIATIONAL METHOD

The advantage of any variational method lies in the fr
dom that it provides in choosing a trial solution to the pro
lem. In making this choice it is expedient to select a funct
that will allow the relevant mathematical operations such
integrations to be easily carried out. This advantage m
however, be balanced against the quality of the desired
sult. It therefore becomes imperative that any choice mus
tested against available and reliable results. Unfortunatel
applying the techniques to problems that lack translatio
invariance we are treading on relatively uncharted territo
and are obliged to return to simple systems for which w
defined results are available. Once again we use the h
sphere fluid model since it provides us with analytical
sults. It is important to emphasize the central aim of t
section: It is not our purpose to merely show the form of
formulas that are produced from the hard-sphere mo
since they abound in the literature,but rather to show that
with even an absurdly simple form of trial solutions t
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variational method we have presented above produces
sonable answers.

As has already been stated, any application of
Ornstein-Zernicke equation necessitates a definition of
direct correlation function. For the hard-sphere fluids pre
ous work @1,19,20# has shown that the so-called Percu
Yevick approximation for the direct correlation function pr
vides reliable results at least for homogeneous syste
According to the Percus-Yevick approximation

c~PY!~ i , j !5$12e2bc~ i , j !%$h~ i , j !11%.

Here, the particle-particle interaction potentialc( i , j ) is infi-
nite if the spheres overlap and zero otherwise. When sub
tuted in the Ornstein-Zernicke equation, keeping in mind
fact that for a homogeneous fluid the one-body distribut
function n1( i ) must become equal to the fluid densityn, an
integral equation in only a single unknown quantity ensu
Wertheim@8# obtained an analytic solution for the direct co
relation function from the resulting integral equation, of t
form

c~PY!~ ur2r 8u!52H~s2ur2r 8u!
1

s3 ~l01l1ur2r 8u

1l2ur2r 8u3!,

l05
s3

D S 11
1

3
nps3D 2

, l152
nps5

D S 11
1

12
nps3D 2

,

l25
np

12
l0 ,mD5S 12

1

6
nps3D 4

.

s is the radius of the excluded volume within which th
centers of two molecules cannot penetrate andH(x) is the
Heaviside step function, defined in the conventional mann

H~x!5H 0 for x,0,

1 for x>0.

It is imperative to bear in mind the fact that the dire
correlation function derived by Wertheim is still only a sol
tion of the Percus-Yevick approximation to the Ornste
Zernicke equation and therefore the superscript~PY! plays a
cardinal role in emphasizing its approximate nature. Furt
improvements on the solution may be obtained, even fo
homogeneous system, by insertingc(PY)(ur2r 8u) in the
Ornstein-Zernicke equation:

h~r1 ,r2!5c~PY!~ ur12r2u!1nE dr3c~PY!~ ur12r3u!h~r3 ,r2!.

~28!

The desired improvements, which we now carry out, w
result by solving Eq.~28!.

Given the properties of the hard-sphere potentialc( i , j ) it
must follow that whenur i2r j u<s then h(ur i2r j u)521.
Moreover, it is for precisely these values of the spatial ar
ment thath(ur i2r j u) possesses its largest absolute valu
and, therefore, we have a benchmark solution available w
8-6
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VARIATIONAL METHODS FOR THE SOLUTION OF THE . . . PHYSICAL REVIEW E 67, 016108 ~2003!
which every approximate solution of the Ornstein-Zernic
equation, for a fluid composed of hard spheres, must be c
pared. The comparison~with 21! can, of course, only be
made in the spatial domainur i2r j u<s. There is absolutely
no reason why the calculation should be limited to this sm
domain except one of expediency; we wish to present a ra
demonstration of the efficacy of the variational method in
region where the pair correlation function acquires its ma
mum values. The extension to larger intermolecular distan
and, indeed, to more realistic problems will be presented
future work.

In order to make useful comparisons we select, for
present, the following four approximate solutions of E
~28!. ~1! The zero order solutionh(0)(ur i2r j u) in the iterative
expansion in Eq.~6!. Clearly in this approximation we ar
equating the correlation function with the direct correlati
function itself. ~2! The first order solutionh(1)(ur i2r j u) in
the iterative expansion in Eq.~6!. ~3! The second order so
lution h(2)(ur i2r j u) in the iterative expansion in Eq.~6!. ~4!
The variational solutionhv(ur i2r j u) obtained in Eq.~23!.
We select the trial functionsht andht to be of the same form
and with a very simple structure:

ht~ ur i2r j u!5ht~ ur i2r j u!5aH~s2ur i2r j u!. ~29!

Here,a is the variational parameter that must be determin
in order to evaluate the variational correlation functionhv .

Although Eq.~28! is strictly valid only for homogeneou
systems, one of our goals is to investigate the thermo
namic properties of nanopores in various industrially imp
tant polymer electrolytes. We will use the densities that
appropriate to the water content of Nafion membranes
Fig. 1 the results of the calculations for water with a ha
sphere radius ofs51.35 Å are displayed.

The purpose of the calculations that we have presente
this section is to examine the usefulness of the variatio
approach for the solution of the Ornstein-Zernicke equati
We have also compared the results with that of the itera
approach. The main conclusions may be summarized in
following manner.

FIG. 1. Total correlation function for water with hard sphe
radius of 1.35 Å.
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~1! The zero order approximationh(0) is certainly a very
poor approximation since it tends toward negative valu
that are less than21 and therefore of an unphysical natur
Clearly this is not surprising since, in essence,h(0) is the
same as the direct correlation function between two partic
and therefore ignores the role of all the other particles in
system.

~2! The second order iterateh(2) performs worse than the
first order iterateh(1), since as in the case ofh(0) it leads to
nonphysical values that are less than21. This is a reflection
of the slow convergence of the iterative series and one wo
have to include higher terms in order to rectify the erro
induced byh(2). It is important to point out that even at th
second order iteration the results are extremely complica

~3! Given the simple form of the trial functions@Eq. ~29!#
the resulting algebraic expression for the pair correlat
function is much more compact than that produced byh(2).
It would, indeed be possible to present this formula exp
itly; however, no further insight would be obtained there
and we have therefore not done so. Despite the relativ
compact nature of the resulting equation the variatio
method performs well and does not tend toward unphys
values.

~4! It is important to keep in mind the fact that the acc
racy of the results of the variational calculation is limited
the ansatz used for writing an explicit form for the dire
correlation function. This problem was alluded to in an e
lier paper by Barker and Henderson@21# and reiterated in a
more recent paper by Yuste and Santos@22#.

V. SELF-CONSISTENT CHOICE OF THE DIRECT
CORRELATION FUNCTION

Equation~23! shows that even though a variational sol
tion of the Ornstein-Zernicke equation can be obtained
remains of very little value unless an expression for the
rect correlation functionc is available. This aspect has bee
already alluded to above in the context of the closure re
tions and a numerical example that employs one of the w
known closure relations was employed in the previous s
tion. In general, there are two broad classes of clos
relations that are commonly used.

~i! A closed analytic expression forc is chosen, based
upon some physical or chemical considerations. This cho
will be referred to as an ansatz. In this category of appro
mations is the mean spherical@23# approximation where the
direct correlation function is taken to be simply2bc( i , j ).
Recently, Blum and Herrera@24# postulated that a Yukawa
type potential can approximate the direct correlation fu
tion. Other analytic expressions based on the local den
approximation~LDA !, where the direct correlation functio
is replaced by a Diracd function, and the weighted LDA
have been used@20#. In all these cases the chosen functi
can be directly inserted in Eq.~23! and the variational ex-
pression for the pair correlation function obtained throu
Eq. ~27!.

~ii ! The direct correlation function is written as a fun
tional of the pair correlation function:

c~ i , j !5c@h~ i , j !#. ~30!
8-7
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Two well-known examples of such a relationship are
Percus-Yevick equation

c~PY!~ i , j !5$12e2bc~ i , j !%$h~ i , j !11% ~31!

and the hypernetted chain equation

c~HNC!~ i , j !52bc~ i , j !1h~ i , j !2 ln$h~ i , j !11%.

In this paper we present a third approach, which uses
Ornstein-Zernicke equation itself along with a variation
method to derive a self-consistent form for the direct cor
lation function. The Ornstein-Zernicke equation is first r
written in a form such that the direct correlation functio
becomes the unknown quantity:

c~1,2!5h~1,2!2E d1̄ h~1,1̄!n1~ 1̄!c~ 1̄,2!. ~32!

The iterative expansion of this integral equation follows i
mediately and is given by

c~1,2!5h~1,2!2E d1̄ h~1,1̄!n1~ 1̄!h~ 1̄,2!

1E d1̄ d2̄ h~1,1̄!n1~ 1̄!h~ 1̄,2̄!n1~ 2̄!h~ 2̄,2!1¯ .

~33!

When Eq.~33! is truncated at different levels a sequence
approximations for the direct correlation function results a
each one may be considered to be a functional of the form
Eq. ~30!. These approximations are, of course, very poor
quality and are improved by the use of the variation
method presented below.

We begin by taking a trial functionct for the direct cor-
relation function~this could be any function that is selecte
by the ansatz in the first approach discussed above!, substi-
tuting it in the Ornstein-Zernicke equation, and solving t
resultant integral equation to obtain an approximate pair c
relation function, which will be designated by the symb
hs :

hs~1,2!5ct~1,2!1E d1̄ ct~1,1̄!n~ 1̄!hs~ 1̄,2!. ~34!

Since Eq.~34! is an integral equation, in the absence
translational invariance it is solved variationally by the a
plication of Eq.~23!. Once the pair correlation functionhs
has been computed it is substituted in the truncated form
Eq. ~33! and the new correlation function thus derived
given the symbolcu :

cu~ i , j !5cu@hs~ i , j !#. ~35!

In the next stage, in order to ensure that the direct co
lation function does not contain errors that are lower th
second order, Eq.~16! is applied, which yields the desire
variational direct correlation function:
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cv~1,2!5cu~1,2!1E d1̄ d2̄ y~1,2;1̄,2̄!@cu~ 1̄,2̄!2ct~ 1̄,2̄!#.

~36!

The functiony( i , j ;k,l ) plays the role ofx( i , j ;k,l ) in Eq.
~16!. Sincecv is a variationally derived function it must sa
isfy

Fdcv~1,2!

dct~3,4! G
ct5c

50. ~37!

Consequently, differentiating Eq.~36! with respect to the ini-
tial trial function ct and setting the result equal to zero a
integral equation fory( i , j ;k,l ) is obtained:

y~1,2;3,4!5a~1,2;3,4!1E d1̄ d2̄ y~1,2;1̄,2̄!a~ 1̄,2̄;3,4!,

~38!

where

a~ i , j ;k,l ![
dcu~ i , j !

dct~k,l !
. ~39!

The overall form of this integral equation is very similar
that of the Ornstein-Zernicke equation; therefore the gen
discussion that was presented in the context of the gen
integral Eq.~17! is directly applicable. The consequence
the similarity is that a solution given by either Eq.~16! or
Eq. ~23! can be obtained immediately:

yv~1,2;3,4!5a~1,2;3,4!1E d1̄ d2̄ yt~1,2;1̄,2̄!a~ 1̄,2̄;3,4!

2E d1̄ d2̄ yt~1,2;1̄,2̄!yt~ 1̄,2̄;3,4!

1E d1̄ d2̄ a~1,2;1̄,2̄!yt~ 1̄,2̄;3,4!

1E d1̄ d2̄ d3̄ d4̄ yt~1,2;3̄,4̄!a~ 3̄,4̄;1̄,2̄!

3yt~ 1̄,2̄;3,4!, ~40!

whereyt andyt are two trial functions.
a is most readily calculated by using Eq.~35! and the

chain rule:

a~1,2;3,4!5
dcu~1,2!

dct~3,4!
5

dcu@hs~1,2!#

dct~3,4!

5E d1̄ d2̄
dcu~1,2!

dhs~ 1̄,2̄!

dhs~ 1̄,2̄!

dct~3,4!
, ~41!

where the functionhs is given by Eq.~35!. Using a diagram-
matic representation of the iterative expansion of Eq.~34!,
the functional differentiationdhs /dct involved in this equa-
tion can be carried out. The procedure necessary is co
niently summarized in the following steps.
8-8
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FIG. 2. Diagrammatic expansion of the approximate pair correlation function.
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~1! The iterative expansion leads in a standard way to
expression

hs~1,2!5ct~1,2!1E d1̄ ct~1,1̄!n1~ 1̄!ct~ 1̄,2!

1E d1̄ d2̄ ct~1,1̄!n1~ 1̄!ct~ 1̄,2̄!n1~ 2̄!ct~ 2̄,2!

1¯ .

~2! The above expansion contains two root points 1 and
which are not integrated over and are designated as w
circles. The field points, which are integrated over, carry
one-body distribution functionn1 , and are represented b
black circles. The trial functionct are represented as bond
as displayed in Fig. 2.

~3! The Dirac delta functiond( i , j ), appearing as a resu
of the functional differentiation, is represented by two wh
circles labeledi and j that are directly joined to each other

~4! Thus, as an example, the functional derivative of
fourth order term (hs,4) in the iterative expansion may b
represented according to Fig. 3.

~5! When the functional differentiation of each term in th
diagrammatic representation of the iterative expansion is
ried out and the results resummed the following outcom
easily seen.

~a! The sum of all terms of the type of diagram~a!
yields

d~1,3!n1~4!hs~4,2!.

The factor ofn1 arises from the conversion of a black to
white circle and, as has already been indicated, the for
contain an implicit factor ofn1 .

~b! The sum of all terms of type~b! and type~c! is equal
to the sum of all diagrams produced by the product

n1~3!hs~1,3!n1~4!hs~4,2!.

~c! The sum of all terms of type~d! results in

d~4,2!n1~3!hs~1,3!.

FIG. 3. Diagrammatic functional differentiation of the four
order term.
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~d! To the set of terms considered above must also
added the result of the functional differentiation ofhs,1 ,
which is a unique term in that it does not include any fie
points. The form of the resultant expression is easily see
be

d~1,3!d~4,2!.

Collecting all the terms, the above functional differentiati
can be put in a general form:

dhs~ i ,k!

dct~ l , j !
5n1~ l !hs~ i ,l !n1~ j !hs~k, j !1d~ i ,l !n1~ j !hs~k, j !

1d~k, j !n1~ l !hs~ i ,l !1d~ i ,l !d~k, j ! ~42!

The functional derivativedcu /dhs can be obtained from Eq
~35!.

Finally, Eqs.~35! and ~42! provide all the functions tha
are needed for the computation ofa and thus of the direct
correlation functioncv .

In order to ensure that the steps presented in this sec
are completely clear we present an example of the calc
tion. The objective of this example is to clarify the mat
ematical steps involved rather than to study a real system
which the computational details would obscure the esse
of the derivation. The computation is summarized in the f
lowing steps.

~i! From Eq.~33! only the first term is considered and s
Eq. ~30! takes the form

c@h#'h. ~43!

~ii ! The trial functionct is taken to be a simplified versio
of Eq. ~4! in which the second term is replaced by an u
known parameterb to be determined variationally:

ct~1,2!5
1

n1~1!
d~1,2!1b. ~44!

If, in Eq. ~44!, we setb50 then the direct correlation func
tion becomes the local density approximation, which has
ready found numerous applications@20#.

~iii ! ct thus defined is substituted in Eq.~34! and the pair
correlation functionhs computed variationally by the appli
cation of Eqs.~23! and ~27!. The two trial functionsht and
ht are again taken to be of very simple forms,ht5a and
ht5a, with the parametera variationally determined:

hs~1,2!5
d~1,2!

n1~1!
1K~b!,

K~b![a1b12a2q11abq11a2bq1
21ab~a1q!,

~45!
8-9
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a52
112bq1

2~b12q11bq1
2!

.

q1 is the one-body configuration integral whose value m
be computed from Eq.~1! with N51.

~iv! Since the direct correlation function has been selec
to have the form given by Eq.~43! it follows that the func-
tion cu defined by Eq.~35! must be equal tohs defined by
Eq. ~45!:

cu~1,2!5hs~1,2!.

From Eq.~45! it follows that

cu~1,2!2ct~1,2!5K~b!2b. ~46!

~v! The derivative ofcu with respect tohs is now given by

dcu~1,2!

dhs~ 1̄,2̄!
5d~1,1̄!d~2,2̄!.

Using Eq.~42! we get

dhs~ 1̄,2̄!

dct~3,4!
5d~ 1̄,3!d~ 2̄,4!1d~ 2̄,4!n1~3!FK~b!1

d~ 1̄,3!

n1~ 1̄!
G

1d~ 1̄,3!n1~4!FK~b!1
d~ 2̄,4!

n1~ 2̄!
G1n1~3!

3FK~b!1
d~ 1̄,3!

n1~ 1̄!
Gn1~4!FK~b!1

d~ 2̄,4!

n1~ 2̄!
G .

Substituting these two derivatives in Eq.~41! followed by
the required integration yields

a~1,2;3,4!5d~1,3!d~2,4!1d~2,4!n1~3!FK~b!1
d~1,3!

n1~1! G
1d~1,3!n1~4!FK~b!1

d~2,4!

n1~2! G1n1~3!

3FK~b!1
d~1,3!

n1~1! Gn1~4!FK~b!1
d~2,4!

n1~2! G .
~47!

~vi! The expression fora thus calculated is substituted i
Eq. ~40! after suitable choices for the trial functionsyt andyt
have been made to obtain the solutionyv . Since the aim of
this example is to illustrate the computation rather than p
duce accurate results it is sufficient, for the present purpo
to set

y~1,2;3,4!'a~1,2;3,4!. ~48!

~vii ! Substituting Eqs.~46!, ~47!, and~48! in Eq. ~36!, we
obtain the direct correlation function

cv~1,2!5
d~1,2!

n1~1!
1f~b!,

f~b!5K~b!1@K~b!2b#@21K~b!q1#2. ~49!
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~viii ! The parameterb is finally found by differentiating
Eq. ~49! with respect tob, setting the answer equal to zer
and solving forb. Thereforeb is a solution of the equation

df~b!

db
50.

In general, the solution of the resulting algebraic equat
must be obtained by numerical methods.

Finally, it is important to make some remarks compari
the variational method presented in this paper with ot
variational methods that abound in statistical mechanics.
haps one of the most important variational theorems is
one obeyed by the grand potential in connection with
equilibrium density. Evans@6# presents an excellent accou
of this theorem in connection with the liquid-vapor pha
interface. After showing that the grand potential is a fun
tional of the one-body density, the theorem demonstrates
the former possesses a minimum with respect to the latte
equilibrium. The variational theorem that we present is o
mathematical nature that would appear whenever an inte
equation of a form similar to the Ornstein-Zernicke equat
is considered.

VI. CONCLUSIONS

In this paper we have presented a very general theo
that is obeyed by the Ornstein-Zernicke equation and by
integral equation that possesses the same overall form.
main utility of this result lies in the fact that it provides u
with the tools for obtaining approximate solutions and the
fore constitutes an alternative to the more expensive num
cal methods. As is common with all variational techniqu
the quality of the result obtained depends critically upon
initial guesses that are made in connection with the trial
lutions. However, the flexibility provided in the choice of th
trial function does provide the investigator the added ben
of using functions that can be easily manipulated in ma
ematical terms. Integral equations possessing forms tha
similar to the Ornstein-Zernicke equation are very comm
and can be found in a variety of different situations. From
discussion we have presented in this paper these equa
too will obey the variational principle derived above. F
example, recently, Cortis, Rossky, and Friesner@25# showed
that it is possible to derive molecular origin-site forms of t
Ornstein-Zernicke equation and it would be of interest
solve these equations using the present method.

The applications of the methodology presented to r
systems, in particular to the thermodynamics of nanopo
will be presented in forthcoming work.
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