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Variational methods for the solution of the Ornstein-Zernicke equation in inhomogeneous systems
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We show that the Ornstein-Zernicke equation and other equations of similar form obey a variational prin-
ciple that can be used to derive approximate solutions. This method requires the use of an initial trial solution
where the variational solution possesses a stationary “point” with respect to the trial solution when the latter
is equal to the exact solution. We show that with even a very simple form of the trial solution the results are
quite reasonable. Furthermore, we have demonstrated that by combining the variational method with an
iterative expansion of the Ornstein-Zernicke equation it is possible to develop a self-consistent method of
writing the direct correlation function.
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[. INTRODUCTION Zernicke equation. As indicated above, this important equa-
tion has been extensively studied but a considerable body of
During the past three decades the study of condensed mdhe literature is directed toward homogeneous systems with
ter has emerged as one of the areas of most intense activitianslational invariance. Our interest in the subject arose
[1]; it is, indeed, impossible to present even a superficiaffom the need to understand the thermodynamic properties of
summary of the developments. In this introductory sectioflanopores that are found in polymeric membranes used in
we mention only a very small “slice” of the relevant litera- the construction of fuel cellf13-16. It is evident that for
ture. From an experimental perspective, the structure factorgUch systems the criterion of translational invariance fails to
for a vast number of systems have been made accessibi@!d. There are, of course a large variety of other phenomena
through the advances in X-ray and neutron Scattering tec]’Where translational invariance is not valid: surface Wetting
nologies. The Fourier transforms of the structure factor aré@nd electrode processes are but two such examples.
related to the pair correlation functidr{1,2), where the two
numerals 1 and 2 are the abbreviations for the complete setll. BRIEF REVIEW OF THE ORNSTEIN-ZERNICKE
of coordinates required for the specification of two arbitrary EQUATION
molecules. This function is readily derived from basic statis-

tical mechanics and therefore constitutes the gateway for tht%e derivation of a well-known equation for which excellent

interpretation of the experimental data. . . .
Three methods of study have emerged as possible argi_ccounts can be found in the literature, but rather to intro-

proaches that may be adopted for the investigation of thes%uce the notation and the framework within which the solu-

systems. tion is sought. The basic quantities to be utilized in this paper

(1) The classical partition function may be expressed adhay be mtrodgged as fOHOWS'.tN lecules f hich th
sums of irreducible cluster integrals and the pair correlatior]_| (|)_We_conSI er systems with molecules for which the
function computed from this expansi¢2-5|. If the system amiltonianHy can be written as
can be expressed in terms of the grand canonical partition N2
function then several powerful theorems can be used and they 1,2 N) = E L +

1(P1,P2, - - - P12 ... N) H(1,2,...N),
calculation is rendered very elegant. If, however, the systems =12m
consist of a finite number ofmoleculaj species then the N N
validity of these theorems is rather doubtful. . .

(2) If the canonical partition function can be written for H(1.2,... N)Ezl ¢(')+i§. Pig).
the system then by application of the methods of functional
differentiation it can easily be shown that the pair correlationHere, the first term it is the total kinetic energy, where it
function must satisfy an integral equation known as thes assumed that molecul@ossesses momentippand mass
Ornstein-Zernicke equatiori6,7]. The Ornstein-Zernicke m, The quantityH is the total interaction energy, which we
equation has been the subject of extensive studies. Startirgssume to consist of one-body(i) and two-body(i,j)
with the work of Werthein{8], who solved the equation for potential energy terms only.

a hard-sphere fluid, Blum and co-workers have developed (ji) With the above Hamiltonian the full canonical parti-
methods that are applicable to fluids with fairly complextion function immediately becomes
structured9-12,.

It is not the purpose of this section to once again present

id

(3) A complete computer based analysis employing the 1 _ Qn
full power of simulation techniques may be employed. Qn=NraAZNan= dn:

In this paper we will investigate the second approach and
develop the tools that are needed to solve the Ornsteinvhere
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27 Bh?\ 12 sin[ny(1)/z* (1 1 sinz*(1
_ B , o(1.2)= [ny(1)/z*( )]: 51,2 — (1)
m ony(2) ny(1) ony(2)
(4)
N N
IT di z*(i)exp( -8 1//(i,j)), (ix) Equation(4) provides the inverse of Eq3) and the
i=1 i< two may be combined to yield the Ornstein-Zernicke equa-
_ tion
Z*(i)=e P B=1KT. (1)
In the above equation¥ is the volume of the systent, is h(1:2)=C(1,2)+f d1c(1,1)ny(1)h(1,2). 5)

Planck’s constantk is the Boltzmann constant, afidis the
absolute temperature As is well known from elementary sta- Since the Ornstein-Zernicke equation is an integral equa-
tistical mechamch is the partition function of an ideal tion it can be solved by using an iterative technique and the
gas and does not depend upon the potential energy of tHest few terms are as follows:
system. The factogy contains all the information that arises
as a result of the nonideality of the system and contains the
basic ingredients that are needed for the computation of the
pair correlation function; it is this quantity that will be of
primary concern in the present work and it will be henceforth + deEC(1,T)n1(T)C(T,§)n1(§)C(ZZ)+---
referred to as theonfiguration integral

(iii) The full N-body distribution function is given by

h(1,2=c(1,2)+ f dlc(1,1)n,(1)c(1,2)

=h©(1,2+hM(1,2+---. (6)
nn(1,2, ... N)= iexr{—,@H(l,Z, N Unfortunately, while such an expansion does converge, the
a rate of convergence tends to be slow and the complexity of

each successive term increases in a dramatic fashion. There-
fore iterative series do not provide a practical method of
solution. It is easy to see that E&) may also be rewritten in

the following form, since the same iterative expansion series

N! ; .
is produced from it:
(N=m)! |m|+1d|nN(12 .N).

An arbitrarym-body distribution function wittm<N can be
obtained fromny by integration over thél—m variables:

nL(1,2,...m=

(iv) The dimensionless+body g, distribution function is h(1,2= 0(1'2)+j d1h(1,1)ny(1)c(1,2). @

defined by
Thus, both methods of writing the Ornstein-Zernicke equa-
Nm(1,2,...m) tion are completely equivalent and both will be used in this
gm(1,2, Ce m): W work.

It is the Ornstein-Zernicke equation that is an important
The two-body functiorg, is often written without the sub- source for the pair correlation function; however, the follow-

script 2 as simplyg. ing facts must be considered in using this equation.
(v) The experimentally important pair correlation function (i) Before the pair correlation function can be computed
alluded to above is defined by from the Ornstein-Zernicke equation the direct correlation
function ¢ must be available since it is still an unknown
h(1,2=9(1,2—1. guantity. There are several prescriptions, commonly referred

to asclosure relations that have been developed for the
(vi) Them-body distribution functions are obtained by the computation oft. While it is not the purpose of this paper to
functional differentiation of the configuration integral: present a discussion of the closure relations, the principles
presented here do have an impact on some of these relations.
oM (ii) The Ornstein-Zernicke equation is an integral equation
nm(1,2,...m)— H z*(i ) 52 (,) (2} that must be solved before the pair correlation function can
-1 be extracted from it. If we consider a system that possesses
(vii) From Eq.(2) it follows that the property of translational invariance then such a solution
is possible; however, for inhomogeneous systems such as
Sny(1)  Sny(1) those found in nanopores and in a variety of other important
* situations the criterion of translational invariance does not
z*(2)  8Inz*(2) . : . ;
hold and either a numerical or an approximate solution must
=n,(1)8(1,2+ny(1)n1(2)h(1,2); (3)  be sought. In most cases, even when the condition of trans-
lational invariance holds, the application of numerical meth-
here,&(1, 2) is the Dirac delta function. ods for solving integral equations has to be used. These nu-
(viii) The direct correlation function(1,2) is defined by merical methods require an initial guess functash or h(),

z"(2) 5
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which is then substituted in the Ornstein-Zernicke equation N o
and an improved versioa or h computed, the process di dj Q=i ki, j)Q(i,j;l,))
being repeated until convergence is achieved. Hansen and
McDonald[1] point to the slow rate of convergence even if a
reasonable guess has initially been made; a situation that
deteriorates with increasing complexity of the fluid. It fol- (12)
lows therefore that there is a need to develop optimization
methods that can b'e used either to pr_odl'Jce approximate SfisertingQ ~* in Eq. (10), we obtain an approximate solution
lutions of an analytic nature or to assist in the convergence, -
process. This paper is devoted to the development of one’
such method. N R R

The Ornstein-Zernicke equation possesses an overall form h,(1,2=h(1,2— | d1d20Q7%(1,2;1,2)3[h,(1,2)].
that resembles the form of another integral equation, which (13)
arises in quantum field theory, namely, the Dyson equation.
Rosenberg and Tolchifl7] showed that it is possible to Equation(10) results from an approximation in which all
derive a variational theorem for the Dyson equation and irsecond and higher order errors have been neglected; it fol-
this paper we present a variational theorem for the Ornsteinows, therefore, thah, must contain errors of second and
Zernicke equation. Furthermore, we show that the variationahigher orders only. From the perspective of the present work
method can be used to select a self-consistent form for ththe most important feature of E(L3) can be understood if it

:j A1 d] QG KT QT 1:0)= 8.1 8 .K).

direct correlation function. is realized thah, differs from the exact pair correlation func-
tion through a first order errorh(-h;), and similarly Eqg.
IIl. VARIATIONAL THEOREM OBEYED BY THE (10) shows thafi| h;] incorporates a first order error whifg
ORNSTEIN-ZERNICKE EQUATION contains second order errors. It therefore follows that Eq.

(13) may be viewed as a transformation that removes first
In order to develop a formalism that is expressible withinorder errors, which is a feature that will be exploited with
the language of functional algebra it is expedient to begimadvantage. It should be evident that this stage in the calcu-
with a very obvious statement: the search for a solution ofation is analogous to the well-known Newtonian method for
the Ornstein-Zernicke equation is completely equivalent tacalculating the roots of nonlinear algebraic equations and, if
solving the functional equation continued in the spirit of that method, the next stage would
involve employingh, as the trial function in a second itera-
J[h(1,2]=0, (8 tion. The process of iterations would finally lead to a self-
consistent solution. It is not our purpose, however, to de-
where velop such a scheme.
The functionh, obeys a variational theorem that can be
~ _ _ | AT T (TR T readily proved by taking the functional derivative of E#3)
Jh(1.9]=h(1.9~c(1.2) J d1h(1.)ny(1)e(1.2). with respect to the trial functioh, and then settingp,=h in
(9 the resulting equation:

The Taylor expansion o[ h] about a trial solutiorh, and 5h,(1,2) 5hy(1,2) _ _
the retention of the linear term only results in the production oh(3.4) = oh(3.0 —f d1d207(1,2;1,2)
of the simplest approximate solution of this functional equa- 8= Ih=h B2 h=h
tion: _
[5ﬁ[ht<1,z>]}
. o o sh(3.4 | _,
Jh(1,2]~3[h(1,2]+ | d1d2Q(1,2;1,2)[h(1,2)
_ =48(1,3)6(2,4)
~h(1,2)]+0[(h—hy’] o -
-0, (10) —f d1d20Q1(1,2;1,2)Q(1,2;3,4)

where we have introduced a functi6hdependent upon four =0. (14)

variables: o
In deriving Eq.(14), use has been made of E¢kl) and(12)

and it proves the variational property of the function. In
. (11 other words, when we consider the 3eof all possible trial
h=h, functions, the functionh, possesses a “stationary point”
when the trial function becomes equal to the exact correla-
The solution referred to above may be extracted from Egtion functionh. This feature justifies the use of the subscript
(10) by introducing the inverse functioff ~* defined in the v in h,. From a practical standpoint it is possible to obtain
following manner: the “best” solution to the Ornstein-Zernicke by using a trial

o3[h(i,j)]

Q(i,j;k,n)E W
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function h; with a certain number of parameters and thenHere, x(i,]j;k,l) is a new and still unknown function. Sec-
determining these parameters by setting the derivative, of ondly, the functional[ h,] can be written from Eq(9) as
with respect to these parameters equal to zero. The math-

ematical machinery required to further develop the varia- Jh(1,2]=hy(1,2 —hy(1,2),

tional method will be presented later in this paper.

From a fundamental perspecti{/&3] it is imperative that
the precise properties of the spa¥de carefully discussed.
We present this analysis in the following manner. hu(1,2)50(1,2)+f d1hy(1,1)n,(1)c(1,2).

(1) Any elementu e X must, clearly, be the function of
two space variables andr’ for which numerical symbols 1o meaning ofh, is obvious since it corresponds to the
such as 1 and 2 have been hitherto used. For the purposes @kt of the first order iteration that ensues from the substi-

studying the structural and metrical properties<af is con- tution of h, in the right hand side of Eq7). Equation(13)
venient to adopt the non-numerical symbolism. It is impor-now becomes

tant to bear in mind the fact that each of these variables is an

the functionh, being defined as follows:

abbreviation for the complete set of coordinates required for - I
the specification of any arbitrary molecule. hu(1,2)=hu(1,2)+f d1d2x(1,2;1,2)
(2) Given any pair of elemenise X andv € X we require
that the linear combinationv=au+bv e X with a and b X[h(1,2)—hy(1,2)]. (16)

being arbitrary members of the real field. This condition is,

indeed, essential for the practical implementation of ourOnce again it is important to reemphasize #reor trans-
method since we will make use of linear combinations offorming propertieof Eq. (16) from the fact that bottn, and
functions with the coefficients of combination as variationalh, contain first order errors whill, contains second order
parameters. This property ensures tkas a linear manifold  errors. In general it is possible to first compuitg from a

in the space of all functions. givenh, and then calculate the unknown functi(i,j;k,I)
(3) As a consequence @¢1) and(2) it follows that given by requiring Eq(14) to hold. We return to this matter later in
ue X, veX, andwe X the following must hold: the paper.
Although Eq.(16) has been derived in the context of the
v+tt(w—v)eX, O=t=<l Ornstein-Zernicke equation it is in fact a general property
that can be derived for any integral equation with the same
Thus, X constitutes aonvexset. overall form as the Ornstein-Zernicke equation. The general

(4) As in any functional space it is possible to introduce aderivation is worth summarizing in the following basic steps.
variety of different norms, but in the present case the follow- (i) Consider an arbitrary linear integral equation
ing is the most convenient definition:

WAB)= 6(AB) + f GAJBK(ABAB) W(AB):
a7

here A and B are any general and arbitrary set of variables
with ¢ the unknown function the form of which is souglat;
andK are known functions.

L . . . (i) A trial solution ¢, is inserted in the right hand side of
(6) Within this metric we assume thatcontains the lim- Eq. (17) and an improved solutior, calculated:

its of all sequences chosen from it and thus constitutes a
normed linear space in its natural metric and qualifies as a L L
Banachspace. wu(A,B)=<p(A,B)+J dAdBK(A,B;A,B) ¢ (A,B).

(7) At this stage a very important difference between the
variational theorems used in the solution of differential equay; is evident thaty, must be characterized by first order
tions(for example, the Schoinger equation of quantum. Me- errors (h— i).
chanics and the present one must be clearly emphasized. In iy A variational solution, characterized by errors of sec-
the former(differential equationsthe variational functional ;4 and higher orders, of a form similar to Eg6) is easily

(the energy in the case of the Sctiimger equatiofis gen-  gerived by proceeding through the same sequence of steps:
erated from the functions in the 9¢tand is not a member of

Jlull=maxu(r,r")].
(5) The norm introduces aatural metric

d(u,v)=|u—vo].

this set. In the present case we see from Ejs-(13) thath, — —

is itself an approximate solution of the Ornstein-Zernicke %(A,B):lﬂu(A,BHJ dAdBKk(A,B;A,B)

equation; thush, e X and therefore, as a functional, shares

the property of convexity wittX. X[ h(A,B)— ¢(A,B)]. (18
It will be convenient for later purposes to rewrite Ef3).

To start, we write the inverse functidd ~* as follows: k plays the role of the functior in Eq. (16).

(iv) Becausey, is a variational solution it must satisfy the
Q7 1,j:k, D=6,k 8,1 —x(i,j;k,1). (15 standard variational equation
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(v) Equation(19) immediately leads to an integral equa-
tion for the functionk:
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o4, (A,B)

x(1,2;3,2=—68(1,3n,(2)h(2,2),
5¢1(C1 D)

=0. (19

L’t‘*” and employ the Ornstein-Zernicke equation with suitable
variable changes. Thus we see that the desidéd is, in

general, given by

Q7 Yi,j;k,H=8G,k) 8,1+ 8(i,kyn(DHh(l,j).
K(AB:C.D)=p(A.B:C.D) (iLj:kD)=a(i,k)8(j,1)+ &G, kyny(Hh(l,j)
Unfortunately, the inverse still contains the unknown pair

+ | dAdBK(A,B;A,B)p(A,B;C,D), correlation functionh and we replace it by a second trial

functionh:
(20 PP , . . .
Q (i,j;k,1)=6(i,k)é(j,1)+ 81, k)yny(Hh(1,j).
where (22
Str(A,B) Substituting Eq(22) in Eq. (13) we obtain an approximation
p(A,B;C,D)E[— . for the pair correlation functioi, :
ya(C.D)], _,

(vi) Equation (20) has the same overall form as the
Ornstein-Zernicke equation but this time involves four vari-
ables in each function. It is evident that a hierarchy of inte-
gral equations involving, in each stage, an increment of two
variables can be derived from the underlying variational

h,(1,2=c(1,2+ f d1hy(1,D)ny(1)c(1,2)

- [ drhamin(n. a2

properties.

In the case of the Ornstein-Zernicke equation a particu-

larly important simplifying feature is present by virtue of the
fact that the functiorK is linearly related tap. This property
allows the functiorf) " to be computed. Taking a functional
derivative of Eq.(9) in the following manner the explicit
form of Q) is easily calculated:

63h(1,21) . oh(12)
[ 5h(3,9) h:ht_9(1'2’3""‘5h(3,4)
_5h(1,1)

- f dlm nl(l)c(l,Z)

=68(1,368(2,4—5(1,3)n4(4)c(2,4).
(21
Combining Egs(21) and(15) we have

f d1d20"%(1,2:1,2)0(1,2:3,4)
= f d1d2[8(1,1)8(2,2)—x(1,2;1,2)][8(1,3) 8(2,4)

—8(1,3)ny(4)c(2,4)]=5(1,3 8(2,4)
—48(1,3n1(4)c(2,4—x(1,2;3,9
+f d2x(1,2;3,2n,(4)c(2,4).

The last three terms in this result will vaniglthich must be

the case if Eqs(15) and (21) are to be the inverse of each
other if we select

x(1,2;3,4=—56(1,3n1(4)h(2,4),

+ f d1c(1,1)ny(1)h(1,2)

+ [ AT a2 (120 @)e2 Tiny (D12
23

The insertion of a second trial functidm. results in the
introduction of the first order erroth(=h,) in h,. Despite
this fact h, still retains its variational property, which we
now demonstrate. Taking the functional derivative of Eg.
(23) with respect to the trial functionls; (3,4) andh. (3,4)
and replacing any residual functiohs and/orh_ by the ex-
act solutionh, we get

sh,(1,2)
5hy(3,4) |n

h

=— 6(1,3)n1(4)[ h(4,2)—c(4,2)

=h
,=h

— J ch<4,T>nl<T>h<T,2>}

O:

(24)

sh,(1,2)
5h.(3,4)

|

L T 5(2,4)n1(3)[h(1,3)—c(1,3)

h,=h

r

- f ch<1.T>nl(T)h<T,3)}

0.

(25

The right hand sides of both these equations vanish because
the exact correlation functioh must, by hypothesis, obey
the Ornstein-Zernicke equation.

From a practical standpoint we may now select the trial
functionsh, andh . to contain arbitrary sets of parameters:
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h(i,j)=h(i,j;a;,a,,....ay), variational method we have presented above produces rea-
sonable answers.
h,(i,j)=h(i,j:bs,bs,....by). As has already been stated, any application of the
Ornstein-Zernicke equation necessitates a definition of the
When these are substituted in E83) we obtain direct correlation function. For the hard-sphere fluids previ-
ous work[1,19,20 has shown that the so-called Percus-
h,=h,(i,j;a:,a,,...,am,b1,bs,....0n). (26) Yevick approximation for the direct correlation function pro-

vides reliable results at least for homogeneous systems.
The parameters can be computed by invoking the variationghccording to the Percus-Yevick approximation
property ofh,: .
™I, j)={1—e P"CIY{h(i,j)+ 1.
oh,
&aj

=0 j=12,... M, Here, the particle-particle interaction potentigli,j) is infi-
nite if the spheres overlap and zero otherwise. When substi-
oh tuted in the Ornstein-Zernicke equation, keeping in mind the
( U) =0 j=1,2,... M. (27)  fact that for a homogeneous fluid the one-body distribution
ab; functionny(i) must become equal to the fluid densityan
] ) ) integral equation in only a single unknown quantity ensues.
Once the set of M simultaneousalgebraic equations(27)  \vertheim[8] obtained an analytic solution for the direct cor-

have been solved for the parametefsndb; and the results  relation function from the resulting integral equation, of the
substituted inh,, the “best” variational approximation t0 form

the solution of the Ornstein-Zernicke is obtained.

The methodology developed above does not provide us ") ) 1 .
with a suitable prescription for the choice of the trial func- ¢ (IT=r')=—H(o—|r=r"[) —s(\o+\yfr—r’|
tions hy and h; and these are left to the judgment of the
investigator. In general it is best to use functions that incor- +Nr—=r']3),
porate as much physical and chemical information about the
system as possible. It is hoped that the method will find =~ o
extensive applications to systems where the simplifications™0™ A~
from translational invariance are not available. In such in-
stances the trial functions could be taken by parametrizing na 4
the pair correlation function of a closely allied system with szﬁ?\o,mA: ( 1- gm‘ms) -
translational invariance and then using the variational
method for calculating the parameters. Another guiding priny is the radius of the excluded volume within which the
Cip|e in making ChOiceS Of the trial funCtionS W0u|d be the centers of two molecules cannot penetrate hi(d) is the

simplicity of these functions so that the necessary mathyeaviside step function, defined in the conventional manner:
ematical operations such as integrations and the solution of

algebraic equations can be easily carried out.

3 5

1 2
3
1+ —12n'n'0' ) ,

1 32 nmo
1+§n770' , N A

0 for x<0,
1 for x=0.

H(X)=|

IV. NUMERICAL ASSESSMENT OF THE POTENTIAL

APPLICABILITY OF THE VARIATIONAL METHOD It is imperative to bear in mind the fact that the direct

. o correlation function derived by Wertheim is still only a solu-

The advantage of any variational method lies in the freeyion of the Percus-Yevick approximation to the Ornstein-
dom that it provides in _cho.o§ing a trial solution to the pr‘?b'Zernicke equation and therefore the supersdip) plays a
lem. In making this choice it is expedient to select a functioncadinal role in emphasizing its approximate nature. Further
that will allow the relevant mathematical operations such a$mprovements on the solution may be obtained, even for a
integrations to be easily carried out. This advantage mushomogeneous system, by inserti®([r—r’|) in the
however, be balanced against the quality of the desired rey stein-zernicke equation:

sult. It therefore becomes imperative that any choice must be

tested against available and reliable results. Unfortunately, in

applying the techniques to problems that lack translationah(fl-rz):C(PY)(|r1—f2|)+nf drsc®V([ri—rghh(rs,rp).
invariance we are treading on relatively uncharted territories (28)

and are obliged to return to simple systems for which well-

defined results are available. Once again we use the hardhe desired improvements, which we now carry out, will
sphere fluid model since it provides us with analytical re-result by solving Eq(28).

sults. It is important to emphasize the central aim of this Given the properties of the hard-sphere potenfal j) it
section: It is not our purpose to merely show the form of themust follow that when|r;—rj|<o then h(|r;—r;|)=—1.
formulas that are produced from the hard-sphere modeMoreover, it is for precisely these values of the spatial argu-
since they abound in the literatureut rather to show that ment thath(lri—rj|) possesses its largest absolute values
with even an absurdly simple form of trial solutions the and, therefore, we have a benchmark solution available with
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Radial distance from the central hard sphere (A) (1) The zero order approximatidn(®) is certainly a very
338 .6?6 1.0|14 1.352 poor approximation since it tends toward negative values
' ! that are less thar-1 and therefore of an unphysical nature.
Clearly this is not surprising since, in essenbé) is the
same as the direct correlation function between two particles
and therefore ignores the role of all the other particles in the
system.
- (2) The second order iteraté?) performs worse than the
first order iterateh™, since as in the case 6f% it leads to
nonphysical values that are less that. This is a reflection
of the slow convergence of the iterative series and one would
J have to include higher terms in order to rectify the errors
P induced byh(®. It is important to point out that even at the
second order iteration the results are extremely complicated.
r- (3) Given the simple form of the trial functioi&qg. (29)]
the resulting algebraic expression for the pair correlation
FIG. 1. Total correlation function for water with hard sphere function is much more compact than that producedlkf)).
radius of 1.35 A. It would, indeed be possible to present this formula explic-
itly; however, no further insight would be obtained thereby
which every approximate solution of the Ornstein-Zernickeand we have therefore not done so. Despite the relatively
equation, for a fluid composed of hard spheres, must be congompact nature of the resulting equation the variational
pared. The comparisofwith —1) can, of course, only be method performs well and does not tend toward unphysical
made in the spatial domaimi—rj|$a. There is absolutely yalyes.

no reason why the calculation should be limited to this small  (4) It is important to keep in mind the fact that the accu-
domain except one of expediency; we wish to present a rapighcy of the results of the variational calculation is limited by
demonstration of the efficacy of the variational method in athe ansatz used for writing an explicit form for the direct
region where the pair correlation function acquires its maxi-correlation function. This problem was alluded to in an ear-
mum values. The extension to larger intermolecular distancefer paper by Barker and Hendersfiil] and reiterated in a
and, indeed, to more realistic problems will be presented imore recent paper by Yuste and Sarit2a].
future work.

In order to make useful comparisons we select, for the V. SELF-CONSISTENT CHOICE OF THE DIRECT
present, the following four approximate solutions of Eq. CORRELATION FUNCTION
(28). (1) The zero order solutioh®(|r;—r;|) in the iterative
expansion in Eq(6). Clearly in this approximation we are
equating the correlation function with the direct correlation
function itself. (2) The first order solutiorh®)(|r;—r;]) in
the iterative expansion in E@6). (3) The second order so-
lution h®)(|r;—r;]) in the iterative expansion in E¢6). (4)
The variational solutiorh,(|r;—r;|) obtained in Eq.(23).
We select the trial functionis; andh . to be of the same form
and with a very simple structure:

v

- h — h(Tl)

v

02+ _ .0 0

| |
o o
=)} +
i

|
o
o0

1

1

Total correlation function

| | |
= = =
&~ [\S3 =]
[ 1
1
1]
t
v
]
\
1

Equation(23) shows that even though a variational solu-
tion of the Ornstein-Zernicke equation can be obtained it
remains of very little value unless an expression for the di-
rect correlation functiort is available. This aspect has been
already alluded to above in the context of the closure rela-
tions and a numerical example that employs one of the well-
known closure relations was employed in the previous sec-
tion. In general, there are two broad classes of closure
relations that are commonly used.

(i) A closed analytic expression far is chosen, based
upon some physical or chemical considerations. This choice
ill be referred to as an ansatz. In this category of approxi-
ations is the mean spherid@3] approximation where the

. . : direct correlation function is taken to be simptyB(i.j).
Although Eq.(28) is strictly valid only for homogeneous Recently, Blum and Herrerg24] postulated that a Yukawa
systems, one of our goals is to investigate the thermody !

; . ) ) _ i . type potential can approximate the direct correlation func-
hamic properties of nanopores N various mdust_r!ally IMPO™ion. Other analytic expressions based on the local density
tant polymer electrolytes. We will use the densities that ar

) ; E:':1pproximation(LDA), where the direct correlation function
appropriate to the water content of Nafion membranes. Iri1S replaced by a Dirad function, and the weighted LDA
Fig. 1 the results of the calculations for water with a hardhave been usef20]. In all these ,cases the chosen function
sphere radius of=1.35 A are displayed. can be directly inserted in Eq23) and the variational ex-

_The purpose of the c_alculat|ons that we have presgnt_ed 'Bression for the pair correlation function obtained through
this section is to examine the usefulness of the variation

approach for the solution of the Ornstein-Zernicke equation. iii) The direct correlation function is written as a func-
We have also compared the results with that of the iterativ%onal of the pair correlation function:

approach. The main conclusions may be summarized in the ’
following manner. c(i,j)=c[h(i,j)]. (30)

h(|ri—riD=h(ri—rjh=aH(e—[ri—rj)). (29

Here,a is the variational parameter that must be determinecﬁ
in order to evaluate the variational correlation functign
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Two well-known examples of such a relationship are the _ R I I
Percus-Yevick equation Cv(1,2)=Cu(1,2)+f d1d2y(1,2;1,2)[c,(1,2)—c(1,2)].
. 36
cPY(i,j)={1—e PYDURN(,j) + 1} (3D (39

The functiony(i,j;k,l) plays the role ofx(i,j;k,l) in Eq.
and the hypernetted chain equation (16). Sincec, is a variationally derived function it must sat-

isfy
cNO(i jy=—By(i,j) +h(i,j)—In{h(i,j) +1}.
=0. (37)

In this paper we present a third approach, which uses the . _c_
-

Ornstein-Zernicke equation itself along with a variational

method to derive a self-consistent form for the direct corre-consequently, differentiating E¢6) with respect to the ini-
lation function. The Ornstein-Zernicke equation is first re-iia trial function ¢, and setting the result equal to zero an

written in a form such that t_he direct correlation function integral equation fo(i,j:k,!) is obtained:
becomes the unknown quantity:

sc,(1,2)
5c.(3,4)

v(1,2:3,4=a(1,2;3,4+ f d1d2y(1,2;1,2)a(1,2;3,4),

c(1,2=h(1,2)- J dih(1,)ny(De(12). (32 @8

The iterative expansion of this integral equation follows im-Where

mediately and is given by scy(ig)
ully

alijikD= 500

(39
c(1,2)=h(1,2)—f d1h(1,1)n,(1)h(1,2)
The overall form of this integral equation is very similar to
o that of the Ornstein-Zernicke equation; therefore the general
+j d1d2h(1,1)ny(1)h(1,2)ny(2)(2,2)+---. discussion that was presented in the context of the general
integral Eq.(17) is directly applicable. The consequence of
(33 the similarity is that a solution given by either E@.6) or

) ) EqQ. (23) can be obtained immediately:
When Eq.(393) is truncated at different levels a sequence of

approximations for the direct correlation function results and — -
each one may be considered to be a functional of the form o¥»(1,.2:3.4=a(1,2;3,4+ | d1d2y(1,2;1,2)(1,2;3,4)
Eq. (30). These approximations are, of course, very poor in
quality and are improved by the use of the variational
method presented below.

We begin by taking a trial functio; for the direct cor-
relation functio'n(this c_ould be any function that is selegted +f de?a(l,Z;TE)yT(TEﬁA)
by the ansatz in the first approach discussed ahmsti-
tuting it in the Ornstein-Zernicke equation, and solving the

- J d1d2y,(1,2;1,2)y,(1,2;3,4)

resultant integral equation to obtain an approximate pair cor- + J d1d2d3d4y,(1,2;34)a(3,4;1,2)
relation function, which will be designated by the symbol
h: Xy.(1,2;3,4), (40)

_ — = = — wherey, andy, are two trial functions.
hs(1,2) Ct(1:2)+f dlec(1,Dn(1)hy(1,2). (34 a is most readily calculated by using ES5) and the

chain rule:
Since Eq.(34) is an integral equation, in the absence of
translational invariance it is solved variationally by the ap- 6c,(1,2  écy[hy(1,2)]
plication of Eqg.(23). Once the pair correlation functiom, a(1,2;3,4= =

has been computed it is substituted in the truncated form of oa(3.4 (3.4

Eqg. (33) and the new correlation function thus derived is — =
given the symbot,,: :f de?f?Cu(l,Z) ohy(1,2) 41

shy(1,2) oci(3.4
cu(i,j)=cy[hs(i,j)]. (35
where the functiorg is given by Eq(35). Using a diagram-

In the next stage, in order to ensure that the direct corrematic representation of the iterative expansion of &%),
lation function does not contain errors that are lower tharthe functional differentiatiorshg/ éc; involved in this equa-
second order, Eq(16) is applied, which yields the desired tion can be carried out. The procedure necessary is conve-
variational direct correlation function: niently summarized in the following steps.
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th1 hJ'Z h‘v3
1 2 1 2 1 2
O © 1 0 ® O+ 0 9 ® O
hy.l
1 2
O *— o—o O

FIG. 2. Diagrammatic expansion of the approximate pair correlation function.

(1) The iterative expansion leads in a standard way to the  (d) To the set of terms considered above must also be

expression added the result of the functional differentiation lof ;,
S which is a unique term in that it does not include any field
hs(1,2):ct(1,2)+f dlc(1,1)n.(1)c(1,2 points. The form of the resultant expression is easily seen to
be

+ [ ddZemn e 2n@e@2) FhIA:
Collecting all the terms, the above functional differentiation
+ee can be put in a general form:

(2) The above expansion contains two root points 1 and 2, ohg(i ’l.() =n,(D)hg(i,Hny(j)hg(k,j)+ 8, Hn(j)hg(k,j)
which are not integrated over and are designated as white 6¢(1.)
circles. The field points, which are integrated over, carry the Sk DD D+ 86 DSk i 42
one-body distribution functiom,, and are represented by (kM (Dhs(i, 1)+ (1,1 6k 1) 42
black circles. The trial functiors, are represented as bonds The functional derivativesc, / shs can be obtained from Eq.
as displayed in Fig. 2. (35).

(3) The Dirac delta functiors(i,j), appearing as a result  Finally, Eqs.(35) and (42) provide all the functions that
of the functional differentiation, is represented by two white are needed for the computation @fand thus of the direct
circles labeled andj that are directly joined to each other. grrelation functiorc, .

(4) Thus, as an example, the functional derivative of the |n order to ensure that the steps presented in this section
fourth order term K ,) in the iterative expansion may be are completely clear we present an example of the calcula-
represented according to Fig. 3. . tion. The objective of this example is to clarify the math-

~ (5) When the functional differentiation of each term in the ematical steps involved rather than to study a real system for
diagrammatic representation of the iterative expansion is cagyhich the computational details would obscure the essence
ried out and the results resummed the following outcome i%f the derivation. The computation is summarized in the fol-

easily seen. _ lowing steps.
~ (a) The sum of all terms of the type of diagrafa) (i) From Eq.(33) only the first term is considered and so
yields Eq. (30) takes the form
S(1,3ny(4)hy(4,2). c[h]~h. 43)

The factor ofn,; arises from the conversion of a black to a  (ii) The trial functionc, is taken to be a simplified version
white circle and, as has already been indicated, the formesf Eq. (4) in which the second term is replaced by an un-

contain an implicit factor oh; . known parameteb to be determined variationally:
(b) The sum of all terms of typéb) and type(c) is equal 1
to the sum of all diagrams produced by the product c(1,2= m5(1,2)+b. (44)
n1(3)h(1,3)n1(4)hy(4,2).
If, in Eq. (44), we setb=0 then the direct correlation func-
(c) The sum of all terms of typéd) results in tion becomes the local density approximation, which has al-

ready found numerous applicatiof0].
(i) c, thus defined is substituted in E®4) and the pair
correlation functionhg computed variationally by the appli-

8(4,2n1(3)hg(1,3).

1 4
ﬁ é)——o——o——o—é = 8 O_.__._é a) cation of Eqgs.(23) and (27). The two trial functionsh, and
. s 4 o, h, are again taken to be of very simple forntg=a and
e N S (5) h,=a, with the parametea variationally determined:
+t O—e—0 o——oz(v) (1,2
: S Qd hy(1,2= ——+K(bh),
FIG. 3. Diagrammatic functional differentiation of the fourth K(b)=a+b+2a%q,+abqg,+ azbqf+ ab(a+q),
order term. (45)
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1+2bq, (viii) The parameteb is finally found by differentiating
a=- ﬁ(bﬂ%qﬁbql) . Eq. (49) with respect tdb, setting the answer equal to zero,

and solving forb. Thereforeb is a solution of the equation

g, is the one-body configuration integral whose value may
be computed from Eql) with N=1. de(b)
(iv) Since the direct correlation function has been selected T 0.
to have the form given by Ed43) it follows that the func-
tion ¢, defined by Eq(35) must be equal tds defined by

Eq. (45): In general, the solution of the resulting algebraic equation

cu(1,2)=hy(1,2). must be obtained by numerical methods.
. Finally, it is important to make some remarks comparing
From Eq.(45) it follows that the variational method presented in this paper with other
cu(1,2)—c(1,2=K(b)—b. (48)  variational methods that abound in statistical mechanics. Per-
I . . . haps one of the most important variational theorems is the
(v) The derivative ott, with respect tdns is now given by one obeyed by the grand potential in connection with the
6c,(1,2) — = equilibrium density. Evangb] presents an excellent account
shi12) =8(1,1)6(2,2). of this theorem in connection with the liquid-vapor phase
s(1.2) interface. After showing that the grand potential is a func-
tional of the one-body density, the theorem demonstrates that

Using Eq.(42) we get - :
g Eq.(42 g the former possesses a minimum with respect to the latter at

5hs(T,?) — = — 5(?,3) equilibrium. The variational theorem that we present is of a
5c,(3.4) =8(1,3)6(2,4)+ 6(2,4)n4(3)| K(b) + —— mathematical nature that would appear whenever an integral
0t ny(1) equation of a form similar to the Ornstein-Zernicke equation

5(2.4) is considered.
+8(1,3)n1(4)| K(b)+ —— | +ny(3)
n1(2)
VI. CONCLUSIONS
x| K(b)+ 6(1,3) ny(4)| K(b)+ 56(2,4) _ In this paper we have presented a very general theorem
nl(f) ! nl(f) that is obeyed by the Ornstein-Zernicke equation and by any

integral equation that possesses the same overall form. The
Substituting these two derivatives in E@tl) followed by  main utility of this result lies in the fact that it provides us
the required integration yields with the tools for obtaining approximate solutions and there-
8(1,3 fore constitutes an alternative to the more expensive numeri-
«(1,2;3,4=46(1,3 5(2,4)+5(2,4)n1(3)[K(b)+ } cal methods. As is common with all variational techniques
(1) the quality of the result obtained depends critically upon the

8(2,4) initial guesses that are made in connection with the trial so-
+6(1,3)n1(4)| K(b)+ n(2) +n4(3) lutions. However, the flexibility provided in the choice of the
1 trial function does provide the investigator the added benefit
51,3 5(2,4) of using functions that can be easily manipulated in math-
x| K(b)+ m}nlﬂ)[K(b)ﬁL m} ematical terms. Integral equations possessing forms that are

similar to the Ornstein-Zernicke equation are very common
(47) and can be found in a variety of different situations. From the
. ) _ ) . discussion we have presented in this paper these equations
(vi) The expression fow thus calculated is substituted in 44 il obey the variational principle derived above. For
Eq. (40) after suitable cho_lces forthe_trlal fl_Jnctloyltsan_dyT example, recently, Cortis, Rossky, and Friegi# showed
have been made to obtain the solutign Since the aim of ¢ it is possible to derive molecular origin-site forms of the
this example is to illustrate the computation rather than propnstein-zernicke equation and it would be of interest to
duce accurate results it is sufficient, for the present purposegg|ye these equations using the present method.
to set The applications of the methodology presented to real
A ) systems, in particular to the thermodynamics of nanopores,
y(1,2:34~a(1,2,34. (48) will be presented in forthcoming work.
(vii) Substituting Eqs(46), (47), and(48) in Eq. (36), we
obtain the direct correlation function
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